C++ 11 Features
C++ 11 Link to Video
This are notes taking from videos in BoQian Channel, for learning purpose.
Initializer List
1
2
3
4
5
6
7
8
9
10
11
12
13
14
//C++ 03 initializer list:
int arr[4] = {3, 2, 4, 5};
vector<int> v;
v.push_back(3);
v.push_back(2);
v.push_back(4);
v.push_back(5);
// C++ 11 extended the support
vector<int> v = {3, 4, 1, 9}; // Calling initializer_list constructor
// All the relevant STL containers have been updated to accept initializer_list.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
// Define your own initializer_list constructor:
#include <initializer_list>
class BoVector {
vector<int> m_vec;
public:
BoVector(const initializer_list<int>& v) {
for (initializer_list<int>::iterator itr = v.begin(); itr!=v.end(); ++ itr)
m_vec.push_back(*itr);
}
};
BoVector v = {0, 2, 3, 4};
BoVector v{0, 2, 3, 4}; // effectively the same
Uniform Initialization
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
// C++ 03
class Dog { // Aggregate class or struct
public:
int age;
string name;
};
Dog d1 = {5, "Henry"}; // Aggregate Initialization
// C++ 11 extended the scope of curly brace initialization
class Dog {
public:
Dog(int age, string name) {...};
};
Dog d1 = {5, "Henry"};
Uniform Initialization Search Order(Compiler):
- Initializer_list constructor
- Regular constructor that takes the appropriate parameters.
- Aggregate initializer.
Example:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Dog d1{3};
class Dog {
public:
int age; // 3rd choice
Dog(int a) { // 2nd choice
age = a;
}
Dog(const initializer_list<int>& vec) { // 1st choice
age = *(vec.begin());
}
};
Auto Type
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
std::vector<int> vec = {2, 3, 4, 5};
// C++ 03
for (std::vector<int>::iterator it = vec.begin(); it!=vec.end(); ++ it)
m_vec.push_back(*it);
// C++ 11: use auto type
for (auto it = vec.begin(); it!=vec.end(); ++ it)
m_vec.push_back(*it);
auto a = 6; // a is a integer
auto b = 9.6; // b is a double
auto c = a; // c is an integer
auto const x = a; // int const x = a
auto& y = a; // int& y = a
// It's static type, no run-time cost
// It also makes code easier to maintain.
// 1. Don't use auto when type conversion is needed
// 2. IDE becomes more important
foreach
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
// C++ 03:
for (vector<int>::iterator itr = v.begin(); itr!=v.end(); ++ itr)
cout << (*itr);
// C++ 11:
for (auto i: v) { // works on any class that has begin() and end()
cout << i ; // readonly access
}
for (auto& i: v) {
i++; // changes the values in v
} // and also avoids copy construction
auto x = begin(v); // Same as: int x = v.begin();
int arr[4] = {3, 2, 4, 5};
auto y = begin(arr); // y == 3
auto z = end(arr); // z == 5
// How this worked? Because begin() and end() are defined for array.
// Adapt your code to third party library by defining begin() and end()
// for their containers.
nullptr
To replace NULL in C++ 03
1
2
3
4
5
6
7
8
9
void foo(int i) { cout << "foo_int" << endl; }
void foo(char* pc) { cout << "foo_char*" << endl; }
int main() {
foo(NULL); // Ambiguity
// C++ 11
foo(nullptr); // call foo(char*)
}
enum class
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
// C++ 03
enum apple {green_a, red_a};
enum orange {big_o, small_o};
apple a = green_a;
orange o = big_o;
if (a == o)
cout << "green apple and big orange are the same\n";
else
cout << "green apple and big orange are not the same\n";
// C++ 11
enum class apple {green, red};
enum class orange {big, small};
apple a = apple::green;
orange o = orange::big;
if (a == o)
cout << "green apple and big orange are the same\n";
else
cout << "green apple and big orange are not the same\n";
// Compile fails because we haven't define ==(apple, orange)
static assert
1
2
3
4
5
// run-time assert
assert( myPointer != NULL );
// Compile time assert (C++ 11)
static_assert( sizeof(int) == 4 );
delegating constructor
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// C++ 03:
class Dog {
init() { ... };
public:
Dog() { init(); }
Dog(int a) { init(); doOtherThings(); }
};
/* Cons:
* 1. Cumbersome code.
* 2. init() could be invoked by other functions.
*/
// C++ 11:
class Dog {
int age = 9;
public:
Dog() { ... }
Dog(int a) : Dog() { doOtherThings(); }
};
// Limitation: Dog() has to be called first.
constexpr
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
int arr[6]; //OK
int A() { return 3; }
int arr[A()+3]; // Compile Error
// C++ 11
constexpr int A() { return 3; } // Forces the computation to happen
// at compile time.
int arr[A()+3]; // Create an array of size 6
// Write faster program with constexpr
constexpr int cubed(int x) { return x * x * x; }
int y = cubed(1789); // computed at compile time
//Function cubed() is:
//1. Super fast. It will not consume run-time cycles
//2. Super small. It will not occupy space in binary.
New string literals
1
2
3
4
5
6
7
8
9
10
// C++ 03:
char* a = "string";
// C++ 11:
char* a = u8"string"; // to define an UTF-8 string.
char16_t* b = u"string"; // to define an UTF-16 string.
char32_t* c = U"string"; // to define an UTF-32 string.
char* d = R"string \\" // to define raw string.
Keyword final
1
2
3
4
5
6
7
class Dog final { // no class can be derived from Dog
...
};
class Dog {
virtual void bark() final; // No class can override bark()
};
Keyword delete
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class Dog {
Dog(int age) {}
}
Dog a(2);
Dog b(3.0); // 3.0 is converted from double to int
a = b; // Compiler generated assignment operator
// preventing the user from using a class different manner
// C++ 11:
class Dog {
Dog(int age) {}
Dog(double ) = delete; //
Dog& operator=(const Dog&) = delete;
}
Keyword default (for default constructor)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Dog {
Dog(int age) {}
};
Dog d1; // Error: compiler will not generate the default constructor
// C++ 11:
class Dog {
Dog(int age);
Dog() = default; // Force compiler to generate the default constructor
};
Keyword override (for virtual function)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
// C++ 03
class Dog {
virtual void A(int);
virtual void B() const;
}
class Yellowdog : public Dog {
virtual void A(float); // Created a new function
virtual void B(); // Created a new function
}
// C++ 11
class Dog {
virtual void A(int);
virtual void B() const;
void C();
}
class Yellowdog : public Dog {
virtual void A(float) override; // Error: no function to override
virtual void B() override; // Error: no function to override
void C() override; // Error: not a virtual function
}
Lambda Function
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
cout << [](int x, int y){return x+y}(3,4) << endl; // Output: 7
auto f = [](int x, int y) { return x+y; };
cout << f(3,4) << endl; // Output: 7
template<typename func>
void filter(func f, vector<int> arr) {
for (auto i: arr) {
if (f(i))
cout << i << " ";
}
}
int main() {
vector<int> v = {1, 2, 3, 4, 5, 6 };
filter([](int x) {return (x>3);}, v); // Output: 4 5 6
...
filter([](int x) {return (x>2 && x<5);}, v); // Output: 3 4
int y = 4;
filter([&](int x) {return (x>y);}, v); // Output: 5 6
//Note: [&] tells compiler that we want variable capture
}
// Lambda function works almost like a language extention
template
for_nth_item
This post is licensed under CC BY 4.0 by the author.